Kernel Optimization using Pairwise Constraints for Semi-Supervised Clustering

نویسندگان

  • Bojun Yan
  • Carlotta Domeniconi
چکیده

A critical problem related to kernel-based methods is the selection of an optimal kernel for the problem at hand. The kernel function in use must conform with the learning target in order to obtain meaningful results. While solutions to estimate optimal kernel functions and their parameters have been proposed in a supervised setting, the problem presents open challenges when no labeled data are provided, and all we have available is a set of pairwise must-link and cannot-link constraints. In this paper we address the problem of optimizing the kernel function using pairwise constraints for semi-supervised clustering. To this end we derive a new optimization criterion to automatically estimate the optimal parameters of composite Gaussian kernels, directly from the data and the given constraints. We combine the optimal kernel function computed by our technique with a recently introduced semi-supervised kernel-based algorithm to demonstrate experimentally the effectivess of our approach. The results show that our method enables the practical utilization of powerful kernel-based semi-supervised clustering approaches by providing a mechanism to automatically set the involved critical parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Semi-supervised clustering with metric learning: An adaptive kernel method

Most existing representative works in semi-supervised clustering do not sufficiently solve the violation problem of pairwise constraints. On the other hand, traditional kernel methods for semi-supervised clustering not only face the problem of manually tuning the kernel parameters due to the fact that no sufficient supervision is provided, but also lack a measure that achieves better effectiven...

متن کامل

An Adaptive Kernel Method for Semi-supervised Clustering

Semi-supervised clustering uses the limited background knowledge to aid unsupervised clustering algorithms. Recently, a kernel method for semi-supervised clustering has been introduced, which has been shown to outperform previous semi-supervised clustering approaches. However, the setting of the kernel’s parameter is left to manual tuning, and the chosen value can largely affect the quality of ...

متن کامل

An Improved Semi-supervised Fuzzy Clustering Algorithm

Semi-supervised clustering is an important method which can improve clustering performance by introducing partial supervised information. This paper mainly studies the semi-supervised fuzzy clustering based on Mahalanobis distance and Gaussian Kernel for SCAPC algorithm. Here, we give a new semi-supervised fuzzy clustering objective function. By solving the optimization problem with above objec...

متن کامل

Learning Kernels for Semi-Supervised Clustering

As a recent emerging technique, semi-supervised clustering has attracted significant research interest. Compared to traditional clustering algorithms, which only use unlabeled data, semi-supervised clustering employs both unlabeled and supervised data to obtain a partitioning that conforms more closely to the user's preferences. Several recent papers have discussed this problem (Cohn, Caruana, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006